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Abstract —A formafly exact solution is given for the problem of scatter-

ing at a circukw-to-rectarrgnbu waveguide junction and at a thick di-

aphragm, with a centered circular aperture, in a rectangular wavegnide.

The method uses normal ‘II? and TM mode expansions of the wavegnide

fields and trarfitionaf mode matcfring of the transverse electric and mag-

netic fields at the jnnction boundary. Exact closed-form expressions are

obtained for the electric field mode-matching coefficients which conple the

‘II?,(TM) modes in the reetangnlar gnide to the TE(TM) and TM(TE)
modes in the circnfar gnide. Numerical results are presented for the case of

TEIo mode propagation in the larger rectangnfar guide with all other

modes cutoff. Convergent numerical results for the equivalent shunt sus-

ceptaoces of snch junctions are obtained when abont 12 modes (eight ‘II

and four TM) are retained in the circular waveguide or in the circular

aperture of the diaphragm. The resnlts are graphically compared with

formulas and curves due to the quasi-static theory of Bethe and the

variational theory given in the Waceguidc Handbook [2].

I. INTRODUCTION

E LECTROMAGNETIC DIFFRACTION by a circular

aperture in a conducting screen is important in micro-

“wave engineering. Waveguide diaphragms with circular

apertures can be used as matching elements in microwave

circuits or in the construction of cavity filters. Waveguide-

to-cavity coupling is often accomplished with a circular

aperture.
The theory of diffraction by small holes was pioneered

by Bethe [1]. He showed that a small aperture in a con-

ducting screen is approximately equivalent to an electric

dipole normal to the screen with a strength proportional to

the normal component of the exciting field, and a mag-

netic dipole in the plane of the screen with a strength

proportional to the exciting tangential magnetic field.

The most complete variational solution of scattering

from a diaphragm with centered circular aperture in a

rectangular waveguide is given in Marcuvitz [2, pp.

238–240]. The equivalent circuit for the aperture consists

of a susceptance shunted between two wires of a transmis-

sion line. Full mode expansions of the waveguide fields are

used but the aperture E field is approximated with a static,

small-hole distribution. Therefore, these formulas will be

less accurate for larger holes.
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Modal analysis, coupled with the technique of matching

the tangential electric and magnetic fields at waveguide

junction discontinuities, has been used to solve a variety of

problems [3]–[6]. Modal analysis suffers from the relative

convergence problem, but this can be eliminated by a

judicious choice for the ratio of the number of modes ursed

for the aperture field expansion to the number of modes

used for the waveguide field expansion [7], [8].

In this paper, modal analysis and the matching of the E

and H fields at the junction of a circular and a rectangular

waveguide lead to a closed-form analytical solution for the

scattering matrix [S] of the junction. It is demonstrated

that convergent numerical results for the dominant-mode

(TEII or TEIO) reflection and transmission coefficients can

be obtained by retaining about 12 modes (eight TE and

four TM) in the smaller, circular waveguide (see Fig. 1).

The case of a thick diaphragm, with a centered circular

hole, in a rectangular waveguide is then treated as a

cascaded connection of rectangular–circular–rectangular

guides. The generalized scattering matrix technique [8], [9]

is used to deduce the scattering matrix [ Sd] of the di-

aphragm. In both cases (simple circular-to-rectangular

junction and the rectanguku-circular-rectartgular di-

aphragm junction), the numerical results are presented in

terms of the inductive shunting susceptances across equiv-

alent transmission lines. The results are compared with the

formulas and curves due to Bethe [1], [10] and those in the

Waveguide Handbook.

II. ELECTRIC FIELD MODE MATCHING

AT THE JUNCTION

As illustrated in Fig. 1, the circular waveguide of radius

R (guide 1) forms a junction at z = O with a larger rectan-

gular waveguide of lateral dimensions a and b (guide 2),
with b > 2R. Note that the z axis is the axis of symmetry

for both guides. The more general problem of a junction

with laterally displaced axes appears to have a solution

based on the techniques given in this paper but, at present,

the details have not been worked out.

In the circular waveguide (guide 1 for which z < O), the

tangential electric field just to the left of the junction

(z= O) can be given as a superposition of TE (h-type) and
TM (e-type) modal fields:

qr
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Fig. 1. A circular-to-rectangular waveguide junction. Gtudes have a
common axis of symmetry (z axis).

Traditionally, the modal fields in (1) are written as (see

Collin [10, p. 110])

“sin(q$) + @& Y/( P&.P) cos (q+)] (2)

.sin(q+) +$(q/P)Jq(D~JP) cos(q@)] (3)

where

r2
,–

and

/77

are normalization constants in which ~&R and f?$R are,

respectively, the r th roots of l;(x) and J~(x).

However, for the circular-to-rectangular junction, it is

convenient to replace the unit uectors ~ and ~ in (2) and

(3) by their Cartesian (2, j) equivalents. It is not difficult

to show that (2) and (3) can be reexpressed as follows:

+ Jq+I(B;rP)~q+@)] (4)

4,’;,(P> 4) = %[J,.O;P)U$’)

– J,+l(P;;P)’%+A4’)] (5)

are @-dependent unit vectors.
In the rectangular waveguide (guide 2 for which z > O),

with the z axis passing along its center and not along its

lower left corner (as is normally assumed), the modes for

which the E fields are even functions of both x and y

would be those scattered by a TEIO mode field incident

from guide 2 or a TEII mode incident from guide 1- In this

case of greatest practical interest, the tangential E field

just to the right of the junction (z= O+ ) can be expanded

as follows:

72(X, y) = ~ ~ [b~~;zj:~n(x, y)+ b$jzj:~n(x, y)] (7)
inn

with m=l,3,5, . . . and n = 0,2,4, . . . .

Moreover, to obtain E fields with even symmetry with

respect to the x and y axes in the circular waveguide, the

series expansion (1) is for odd q (q= 1,3,5,”“ “ ).
In (7), the modal fields are

@l!ln(x7 Y) = Nmn [~8,nsin(Bxmx)s~(BYnY)

+ Jflxmcos (Bxmx) Cos(BynY)] (8)

Z4,%(X, y) = N~. [%~sin(&~x)sin(& .y)

- JPyncos (Bxmx) Cos (PynY)] (9)

where

/
N~ti = 2 ~ab[l?~n +2&’~/c~] (lo)

is the rectangular waveguide modal normalization factor,

in which

&~a=m~, &.b=n~and c.=lifn=O, e.=2ifn#0.

However, we now find it convenient in this circular-to-

rectangular waveguide junction problem to transform the

coordinates (x, y) in (8) and (9) into their circular cylin-

drical equivalents. First, one can show that the double sine

product occurring in (8) and (9) can be written as

sin (PXnX) sin (&Y)

= sin[/3~. cos@~.pcos@] sin[~~. sin+~.p sine]

where

P2=X2+Y’ B:n = I?:m + B:n ,

Then, by means of standard trigonometric identities and a

well-known Bessel–Fourier expansion [11, p. 361], we find

that

sin (P.mx) sin ( &Y)

= - ii ( - l) PJ2,(/3rnnP) siII(QP%7m)siTI(zP@) (11)
~=1

Moreover, in the same way, one can verify that

COS(&mX)U@ynY) = ~ CP(–1)PJ2P(%2P)
~=o

.cos(2pC$mn) cos(2p@). (1’2)



WADE AND MACPHIE: CIRCULAR-TO-RECTANGULAR WAVEGUIDE JUNCTIONS 1087

Use of (11) and (12) in (8) and (9) leads to

“[Bynsmn,p(+)f+Bxmcmn,p(@)j]

‘%:22.(A4)=%.PEOJ2P(LO)

wherein

%.,,($) = -(-l) ps~(2p@mn)sin(2p@)

cmn,p(@) =~p(-l)pco5(2p@mn) cos(2p@).

(11.3.29)], one can show that

H mn, qr =A ~n,qNmnN;:)cos( q@mn)

“[ , ~n,q+l,r] (21a)B& q_l,, – B“

where

(14)
A mn,q = 2W(–l P-1)’2L% (22)

We are now in a position to enforce the electromagnetic

I
‘~;,~q+z(P:,R)~q+~(8~.R) @j

boundary conditions on the transverse electric field at the q

circular-to-rectangular waveguide junction. The field must with t= (or ‘f.

be continuous (matched) in the circular aperture O < p < R However, by making use of the fact that .lq(/l;;R) = O,

and vanish everywhere else in the region 21x1 < a, 21yl <b; we can, with recursion formulas for Bessel functions, show

we tacitly assume that the conductivity of all the metal that (21a) vanishes, i.e.,

surfaces is infinite. Thus, the boundary conditions are such

that
K mn, qr= o. (21b)

{

~l(P>@),O<p GR,
Z*(p, @)’= o

9 p> Rand 21xl<a,21yl <b.

This curious phenomenon also occurs for the rectangular-

to-rectangular waveguide junction [9, p. 2061].

If we now scalar multiply (18) by Z~.e~~(p, +) and in-

(17) tegrate over the rectangular cross section at z = O, we

Scalar multiplication of (18) by ~j,~n(p, +) and integra-

tion over the complete cross section of guide 2 yields, due

to the orthogonality of the guide 2 modes,

where

and

are, respectively, the TE–TE and TE–TM E-field mode-

coupling coefficients for the junction.
These coefficient integrals can be evaluated analytically

if we use (4)–(6) and (13), (15), and (16) in (20) and (21).

Then, in view of orthogonality of the Fourier harmonics

[sin(q + 1)$, cos(q & 1)+] and a Bessel function integral
provided by Abramowitz and Stegun [11, p. 484, eq.

Again, closed-form expressions for these coupling coeffi-

cients (TM–TE and TM–TM) can be deduced

Q mn, qr= –A ~n,qNm~N$!’)sin(q@m~)

The latter can be shown to reduce to

osin (q@mn)Jq(BmnR)Jq- l(B~jR). (Zbb)

Equations (19) and (24) can be cast into matrix form as

follows:
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where a(m) and b(m), with m = h or e, being the modal

weighting coefficient vectors in guides 1 and 2, respec-

tively, and [H], [0] = [K], [Q] and [E] being the sub-

matrices of the overall E-field mode-matching matrix [M],

with

b= [M]a (28)

and

~~= [a(~)~, ~(e)~ ] b~= [b@)~, b(e)~]

with T indicating the transpose operator.

III. THE SCATTERING MATRIX OF THE

CIRCULAR–I?XCTANGULAR JUNCTION

We define the II-field modal coefficient scattering ma-

trix [S] of the circular-to-rectangular waveguide junction

to be such that

where, as is traditional, the + and – superscripts denote,

respectively, incident and scattered waves.

In the case of the lossless structure, one can use H-field

mode matching in the circular junction aperture to deduce

the following matrix equation:

[kf]T[Y,](b-- b+) = [Yl](a+ -a-). (30)

H-field mode matching, analogous to the E-field mode

matching described in Section II, is well known [3], [5] and

will not be treated in detail in this paper. In (30) [~], for

i = 1 and 2, is the modal admittance matrix for the i th

guide.

where the two submatrices in (31) are diagonal. In particu-

lar, for the circular guide, the diagonal elements are

and for the rectangular guide they are

“;’”/(%77%”’33)
In (32) and (33), p ~ is the permeability and El and cz are

the permittivities of the dielectrics filling guides 1 and 2,

respectively.
Then, if we assume that incidence is from guide 1 only,

so that b+ = O, it is straightforward to show, using (28)

and (30), that

a-= (([ Y1]+[YL1])-l([Y1 ]-[yL1]))tz+ (34)

where

[YL,] = [M]=[Y2][M] (35)

is the “load” admittance matrix of guide 2 as “seen” by

guide 1. In view of the fact that b+ = O, it follows from

(29) that

[s,l] = ([Y,]+ [YLJ)-l([Y1]- [YLJ). (36)

The other submatrices in (29) are then deduced by

simple matrix algebra

[s21] = [M]([SIJ+ [I]) (37)

[S,2]=2([Y,]+[YL1 ])-’[M]T[Y2] (38)

[s22] = [M][S12] -[1] (39)

where [1] is the identity matrix and T indicates the trans-

pose operation. These results may also be obtained by

means of the conservation of complex power technique [9],

[12].

IV. TRANSVERSE DIAPHRAGM WITH CENTERED

CIRCULAR HOLE IN RECTANGULAR WAVEGUIDE

Fig. 2 illustrates the geometry of a diaphragm (perfectly

conducting) of nonzero thickness 1 with a centered circular

hole of radius R. This structure can be regarded as a

rectangular–circular–rectangular cascaded connection and

the generalized scattering matrix technique [8, pp. 207-217]

may be used to determine the overall scattering matrix

[Sd] of the diaphragm

[s;l] = [s:3] = [s, J+[s121[~l[s221

“{[11 -[ W,21[MS221[W221 }-1[W2J (40)

[s:3] = [s$,]

= [s,21{[Hm s221[Im2,1}-’[Ll[ s,J. (41)

Here, the transmission-line matrix [L] of the central cir-

cular guide is a diagonal matrix such that

with submatrix diagonal elements given by

L$?q,=e.p(-/Hz)

qr>qr=exP( -/ml).
L(e)

(42)

(43)

In (43), the subscript 2 denotes the circular guide’ (see Fig.

2).

V. NUMERICAL RESULTS

We begin with the case of a circular–rectangular wave-

guide junction. In our numerical computations, which con-

sider only air-filled guides, we selected a frequency range
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Fig. 2. A thick diaphragm, with centered circular hole, in a rectangular

waveguide.

for which the only propagating mode in the larger rectan-

gular guide was the TEIO mode. Consequently, there were

no propagating modes in the smaller circular guide. Thus,

the reflection coefficient p10 of the TEIO mode in the

rectangular guide was of primary interest

Plo = ~22,10,10. (44)

From plo one can determine the normalized load admit-

tance (for TEIO rectangular modes) of the junction

1 – Plo
~=–jE’=—

1 + plo
(45)

which is pure imaginary since the circular guide is cut off.

Moreover, the minus sign indicates that the junction sus-

ceptance is inductive.

In the numerical work, the number of modes assumed in

each waveguide strongly depends on the size of the circular

guide relative to the rectangular. Table I provides the

relevant information. Normally, half as many TM modes

as TE modes are used in the circular guide. Moreover, as

R/b diminishes and with a = (9/4)b, the number of rect-

angular guide modes increases dramatically. Fortunately,

this large number of modes need only be used in the

calculation of the load admittance matrix [ YLI] as given by

(35); therefore no inuersion of a large ma@x is required.

Tables 11 and III show the convergence of B7 together with

ED for the thin diaphragm with a circular hole as a

function of the number of modes in the circular guide for

various values of R/b and at two frequencies; the rectan-

gular guide is assumed to be standard X-band guide with

a = 2.286 cm. It is seen in Tables II and III that for about

a dozen modes (eight TE and four TM) in the circular

guide, the numerical results have converged quite well for

all R/b ratios and at both the low and high frequencies.

In Fig. 3, the susceptance B1 is plotted as a function of

a/A with R/b as a parameter. Twelve modes were used in

the circular guide in all cases. Not surprisingly, the normal-

ized susceptance increases as the circular waveguide radius

decreases and diverges as a/A -+ 0.5, since the rectangular

TEIO mode’s admittance vanishes at this point.

Also plotted at discrete values of a/A are the load

susceptances given in the Waveguide Handbook [2, p. 327].

For small irises, one has

TABLE I

NUMBER OF RECTANGULAR MODES FOR A GIVEN NUMBER OF

CIRCULAR MODES

Number .f Number of ReCCaWUhr Modes (TE, TM)
circular
Modes R-b12
(TE, Tu)

R-3b18 R-b14 R-b18

7

2,1 13,6 20,10 60,23 1S5,95

4,2 18,10 35,20 65,50 275,20

8,4 35,20 65,40 130,90 500,350

TABLE II

CONVERGENCE OF BJ AND ED AT 8 GHz

Nun. of
Modes

I

XJ iD

I

FJ XD

I
iJ iD

TE, TM

2,1 9.62 6.85 23.7 17.4 82.1 61.8

4,2 9.18 6.15 22.6 15.7 78.0 55.7

8,4 9.11 6.o1 22.4 15.4 77.2 54,6

a = 2.25b = 2.286 cm.

TABLE III

CONVERGENCE OF BJ AND ~D AT 14 GEl

b18

i,

1

ill

670 514

632 466

628 454

r 9. b12 3b/8 b14 - b,, ~

Nun. of
Modes

I

iJ iD
I

i, iD

I
FJ iD

I
i, iD

TE, TM

2,1 2.56 2.08 7.39 5.111 28.0 20.4 242 184

4,2 2.k5 1.87 7.04 4.83 26.6 18.2 230 I <6

8,4 2.44 1.86 6.99 4.76 26.3 17.9 227 162

a = 2.25b = 2.286 cm.

30t\ R

a . 2.2s b

2.0

Im-
~=
~

!.0 –

● MARCUVITZ

“o~
1.5

a/A

Fig. 3. Susceptance of rectangnfar-to-circular waveguide junction.

where D = 2 R and ~ ~ is the wavelength of the propagat-

ing mode in the rectangular waveguide. The values for ED

can be obtained from a graph elsewhere in the handbook

[2, p. 240]. We note that the agreement between the

quasi-static variational solution (46) and the more rigorous

scattering matrix solution (solid lines in Fig. 3) is quite

good, even for large values of R/b.

Numerical results for the more interesting case of a thin

(1= O) diaphragm with centered circular aperture in a

rectangular guide are presented in Fig. 4. Again, it is

convenient to represent the zero-thickness diaphragm as a

shunting susceptance ~~ = B~/ Ylo normalized with re-
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0 MARCUVITZ b12
o
0.5 07 0.9 1.1 I.3 1,5

o/i
Fig. 4. Susceptance of a thin diaphragm with circular aperture. Solid

lines are calculated using the present method while broken lines are
from the small-hole formula.

spect to the rectangular TEIO mode’s admittance. ED is

computed for four aperture radii, and the convergence

behavior is indicated in Tables II and III. For twelve

modes in the circular guide, it is estimated that the error in

ED is 2 percent or less. Also given in Fig. 4 are curves

based on the well-established formula

3abA~
zD’—

1677R3 ‘
R<< Ag (47)

derived in Collin [10, pp. 190–194] and originating with

the quasi-static theory of Bethe [1]. As expected, (47)

agrees well with the present results for small holes, R <

b/8. For larger apertures, the simple formula overesti-

mates ED and hence underestimates the transmitted field.

Bethe shows that for small apertures the fields scattered in

the forward direction are proportional to R3/A2, whereas

for large Kirchhoff-type apertures they vary as R2/A.

Accordingly, as R/A increases (but in our case still re-

mains less than unity), the small-aperture (Bethe) theory

predicts a forward scattered field that is too weak and

hence a ED that is too large. This is confirmed by the

results presented in Fig. 4.

The diaphragm’s susceptance is also compared with the

variational calculus susceptance provided by the Waoe-

guide Handbook [2, p. 240]. The latter gives lower suscep -

tances than the small-hole expression, but for large holes
(R= b/2) gives values that differ from ours by about 10

percent.

Fig. 5 provides curves of FD for seven different ratios of

R/b. The range of a/A is only over that in which the

TEIO mode alone can propagate, i.e., the range of greatest

practical interest.

We next turn to the case of a diaphragm of nonzero

thickness (1 # O). When the normalized load admittance is

calculated, the real part is no longer unity. A more

sophisticated circuit representation is thus required. We

have chosen the r-equivalent circuit shown in Fig. 6. It

3.0,

20

—.
Im

—g
.

z

Lo

o I

R

I I I I
0.5 0.6 0.7 0.8 0.9 [0

o1A

Fig. 5. Susce@mce of a thin diaphragm, with a centered circular aper-
ture of radius R, in a rectangular waveguide (a= 2.25 b).

e
RECTANGULAR
wAvEGUIOE

B.

Yc Bp

H

Bp Yc

.-— I ——

EQUIVALENT TRANSMISSION

LINE ANO ?T NETWORK

Fig. 6. Thick diaphragm with centered circular hole in rectangular
waveguide and the equivalent transmission line with H network.

can be shown that

— (1- d2- do
jBP =

(1+ PIO)2- &

(48)

2 ‘rIo
j~~ =

(1+ PIO)2- ~l?o
(49)

where

7~~= S31,10,10 (50)

is the transmission coefficient of the TEIO mode and is

such that

IP1012+ l~lo12 ‘1 (51a)

arg(plo)–arg(rlo) = T/2. (51b)

Clearly ~P and ~~ can be deduced from a knowledge of

~lo alone. We choose I~lo I and arg ( ~10) for our graphical

results since ~~ -+ co when 1~ O. The amplitude of ~lo is

plotted in Fig. 7(a) for four aperture radii and a series of

diaphs-agm thicknesses ranging in increments of Al/a=

0.02 from I/a = O to l/a= 0.08. As is expected, the trans-

mitted wave’s amplitude decreases with increasing di-
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Fig. 7. Amplitude and phase of the transmission coefficient (TEIO
mode) for a thick diaphragm, with centered circular hole, in rectangular
wavegnide. The thinnest diaphragm (1= O) has the largest 171.

aphragm thickness. Moreover, the effect is greater for

small irises since in a guide of smaller radius the modes

that try to” tunnel” across the diaphragm are more strongly

attenuated.

The phase, of the transmission coefficient, arg ( ~lo), is

plotted in Fig. 7(b). Here the thicknesses are l/a= 0,0.04,

and 0.08, except for the case of R = b/8, where the phase

is almost invariant with thickness. The greatest phase

change occurs for the largest hole (R = b/2). Not surpris-

ingly, the phase is ahnost + 90° for small holes, since in

such a case p10 = – 1 and (51b) must be satisfied.

VI. DISCUSSION AND CONCLUSIONS

This paper has provided an exact modal solution (in

principle) to the problem of scattering at circular-to-rect-

angular waveguide junctions. In practice, numerical results

for dominant-mode reflection and transmission coeffi-

cients accurate to 1 or 2 percent are possible when 12

modes are considered in the smaller circular guide. In the

case of diaphragms with centered circular holes, the effect

of the thickness of the diaphragm has been shown to be

always significant (see Fig. 7). The effect of sidewall thick-

ness in single and multiapertWe waveguide couplers has

previously been taken into account by Levy [13], who used

the earlier small-aperture work of McDonald [14].

Although this paper has postulated throughout that the

waveguides are perfectly conducting, the effect of a large

but finite conductivity can be accommodated by a gener-

alization of the conservation of complex power technique

[15]. Moreover, the analysis of cavity resonators and filters

formed by transverse diaphragms with centered circular

holes is a quite simple extension of the present work, even

if conductivity losses are included [15].
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