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Scattering at Circular-to-Rectangular
Waveguide Junctions

JOHN DOUGLAS WADE anp ROBERT H. MACPHIE, SENIOR MEMBER, IEEE

Abstract — A formally exact solution is given for the problem of scatter-
ing at a circular-to-rectangular waveguide junction and at a thick di-
aphragm, with a centered circular aperture, in a rectangular waveguide.
The method uses normal TE and TM mode expansions of the waveguide
fields and traditional mode matching of the transverse electric and mag-
netic fields at the junction boundary. Exact closed-form expressions are
obtained for the electric field mode-matching coefficients which couple the
TE(TM) modes in the rectangular guide to the TE(TM) and TM(TE)
modes in the circular guide. Numerical results are presented for the case of
TE,;o mode propagation in the larger rectangular guide with all other
modes cutoff. Convergent numerical results for the equivalent shunt sus-
ceptances of such junctions are obtained when about 12 modes (eight TE
and four TM) are retained in the circular waveguide or in the circular
aperture of the diaphragm. The results are graphically compared with
formulas and curves due to the quasi-static theory of Bethe and the
variational theory given in the Waveguide Handbook [2).

I. INTRODUCTION

LECTROMAGNETIC DIFFRACTION by a circular
A _saperture in a conducting screen is important in micro-
wave engineering. Waveguide diaphragms with circular
apertures can be used as matching elements in microwave
circuits or in the construction of cavity filters. Waveguide-
to-cavity coupling is often accomplished with a circular
aperture.

The theory of diffraction by small holes was pioneered
by Bethe [1]. He showed that a small aperture in a con-
ducting screen is approximately equivalent to an electric
dipole normal to the screen with a strength proportional to
the normal component of the exciting field, and a mag-
netic dipole in the plane of the screen with a strength
proportional to the exciting tangential magnetic field.

The most complete variational solution of scattering
from a diaphragm with centered circular aperture in a
rectangular waveguide is given in Marcuvitz [2, pp.
238-240]. The equivalent circuit for the aperture consists
of a susceptance shunted between two wires of a transmis-
sion line. Full mode expansions of the waveguide fields are
used but the aperture E field is approximated with a static,
small-hole distribution. Therefore, these formulas will be
less accurate for larger holes.
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Modal analysis, coupled with the technique of matching
the tangential electric and magnetic fields at waveguide
junction discontinuities, has been used to solve a variety of
problems [3]-[6]. Modal analysis suffers from the relative
convergence problem, but this can be eliminated by a
judicious choice for the ratio of the number of modes used
for the aperture field expansion to the number of modes
used for the waveguide field expansion [7], [8].

In this paper, modal analysis and the matching of the E
and H fields at the junction of a circular and a rectangular
waveguide lead to a closed-form analytical solution for the
scattering matrix [S] of the junction. It is demonstrated
that convergent numerical results for the dominant-mode
(TE,; or TE,,) reflection and transmission coefficients can
be obtained by retaining about 12 modes (eight TE and
four TM) in the smaller, circular waveguide (see Fig. 1).
The case of a thick diaphragm, with a centered circular
hole, in a rectangular waveguide is then treated as a
cascaded connection of rectangular—circular—rectangular
guides. The generalized scattering matrix technique [8], [9]
is used to deduce the scattering matrix [S“] of the di-
aphragm. In both cases (simple circular-to-rectangular
junction and the rectangular—circular-rectangular di-
aphragm junction), the numerical results are presented in
terms of the inductive shunting susceptances across equiv-
alent transmission lines. The results are compared with the
formulas and curves due to Bethe [1], [10] and those in the
Waveguide Handbook.

II. FELectrIiC FIELD MODE MATCHING
AT THE JUNCTION

As illustrated in Fig. 1, the circular waveguide of radius
R (guide 1) forms a junction at z =0 with a larger rectan-
gular waveguide of lateral dimensions a and b (guide 2),
with b > 2R. Note that the z axis is the axis of symmetry
for both guides. The more general problem of a junction
with laterally displaced axes appears to have a solution
based on the techniques given in this paper but, at present,
the details have not been worked out.

In the circular waveguide (guide 1 for which z <0), the
tangential electric field just to the left of the junction
(z =0) can be given as a superposition of TE (%-type) and
TM (e-type) modal fields:

&(p,9) =L X [aPe® (0,9)+ ale)(p,9)]. (1)
q r
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Fig. 1. A circular-to-rectangular waveguide junction. Guudes have a
common axis of symmetry (z axis).
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Traditionally, the modal fields in (1) are written as (see
Collin [10, p. 110])

& (0,6) =NP[6(q/0)J,(B;p)
sin(go) + #8,,J7(B,,0)cos(q9)]  (2)
&) (0,6) = N2 [ 88717, (Bire)

sin(go) + 6(q/p)J,(Bp)cos(ge)] (3)

" (B RY - (B R)

N = 2

” BuRJJ(BLR)

are normalization constants in which 8/,R and /'R are,
respectively, the th roots of J/(x) and J, (x).

However, for the circular-to-rectangular junction, it is
convenient to replace the unit vectors p and ¢ in (2) and
(3) by their Cartesian (X, §) equivalents. It is not difficult
to show that (2) and (3) can be reexpressed as follows:

where

and

’ (h)
&M (0, ¢) = ===, -1(Bip) Ef-1(9)

2
+ Jq+1(Bérp)Eq+1(¢)] (4)

BiNS A
?faegr(p’¢)= q2q [Jqﬂl( z;;p)Eq—l(d))
_Jq+1(ﬁé;p)ﬁq+l(¢)] (5)
where
B, .1(¢) =%sin[(q+1)¢] F Foos[(g£1)9] (6)

are ¢-dependent unit vectors.

In the rectangular waveguide (guide 2 for which z > 0),
with the z axis passing along its center and not along its
lower left corner (as is normally assumed), the modes for
which the E fields are even functions of both x and y
would be those scattered by a TE,, mode field incident
from guide 2 or a TE,; mode incident from guide 1. In this
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case of greatest practical interest, the tangential E field
just to the right of the junction (z =0+) can be expanded
as follows:

& (x, y) = L X [60e.(x, ») + b2&50.(x, )] (7)

with m=1,3,5,--- and n=0,2,4,---.

Moreover, to obtain E fields with even symmetry with
respect to the x and y axes in the circular waveguide, the
series expansion (1) is for odd ¢ (¢ =1,3,5,---).

In (7), the modal fields are

&M (%, ) = N,uu| %8, ,sin (B, x)sin(B,,7)
+ P08 (By,x ) c0s(B,,¥)] (8)
&9, (x,y) =N, [ 2B, sin(B,,x)sin(B,,)

— 9B, ,c0s(B,,.x) cos (,Byny)] (9)

where

Npu=2[\fab[ B2, +282, /¢, (10)

is the rectangular waveguide modal normalization factor,
in which
om@=mm, B, b=nmand €,=1if n=0,¢,=2if n #0.

However, we now find it convenient in this circular-to-
rectangular waveguide junction problem to transform the
coordinates (x, y) in (8) and (9) into their circular cylin-
drical equivalents. First, one can show that the double sine
product occurring in (8) and (9) can be written as

sin (B,.,x) sin ( 'Byny)

=sin[gB,,, 08 ¢,,,0 cos¢]sin[ B, sing,,,p sine]

where

2 2
mn xm+

p?=x>+y? o

o= tan‘l(z) and ¢, = tan‘l( By )
x Bem

Then, by means of standard trigonometric identities and a
well-known Bessel-Fourier expansion [11, p. 361], we find
that

sin(f,,,x)sin ( ﬁyny)
== 2 (=1)"),(B,,p)sin(2pg,,)sin(2p¢). (11)
pr=1
Moreover, in the same way, one can verify that

cos(,mex)cos(,By,,y) = E Ep(—l)Psz(anp)
p=0

+c08 (2p¢,,,) cos (2pe). (12)
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Use of (11) and (12) in (8) and (9) leads to
E,Z(,hrzm(p’ ¢) = Nmn E JZP(anp)
p=0
[BySn,p ()2 + BepCon, ,(9) 9] (13)

=]
E,Z(,erzm(p’ ¢) =Nmn Z J2p(anp)
p=0 '

'[an;smn,p((p))e_Byncmn,p(‘#)yA] (14)

wherein
Swn,p(¢) == (=1)"sin(2pé,,,)sin(2p¢)  (15)
Con,p(#) =¢€,(=1)"cos(2p4,,,) cos (2ps).  (16)

We are now in a position to enforce the electromagnetic
boundary conditions on the transverse electric field at the
circular-to-rectangular waveguide junction. The field must
be continuous (matched) in the circular aperture 0 < p < R
and vanish everywhere else in the region 2|x| < a,2|y| < b;
we tacitly assume that the conductivity of all the metal
surfaces is infinite. Thus, the boundary conditions are such
that

e*z(p,¢)‘={

&(p,9), 0<p<R,
0, p> R and 2|x} < a,2|y| < b.

(17)
Using (1) and (7) in (17) gives
L X bE (0. ¢)+ b2e (0, ¢)
m o
Y YaPe) (p,6)+alde(),(p,9), 0<p<R
={ q r
0, p>Rand2|x|<a,2|y|<b.

(18)
20

Scalar multiplication of (18) by &5*) (p,¢) and integra-
tion over the complete cross section of guide 2 yields, due
to the orthogonality of the guide 2 modes,

br(nhn) = Z ZHmn,qraSI?) + Kmn,qra;i) (19)
q r
where
27 fR_, o
o= [ [ €550 (0.8) &2 (0,0)0 dp s (20)
and

27 fR_, (e
Konr= [ [ &0n(0:9) 20, 0)0 dpds (21)

are, respectively, the TE-TE and TE-TM E-field mode-
coupling coefficients for the junction.

These coefficient integrals can be evaluated analytically
if we use (4)—(6) and (13), (15), and (16) in (20) and (21).
Then, in view of orthogonality of the Fourier harmonics
[sin(g £1)¢,cos(g £1)¢] and a Bessel function integral
provided by Abramowitz and Stegun [11, p. 484, eq.
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(11.3.29))], one can show that

Hmn,qr = Amn,quan(:l)cos (q¢mn)
'[Brlnn,q——l,r+Br’nn,q+1,r] (203)
Koin,qr = Apn, ¢ Nopu NS 05 (4,,,,)
: [Br,n,n,q—l,r - Br:zln,q+1,r] (213)
where
= (g—1/2
Amn,q_27r(_1) ? len (22)
and
¢ 1 B‘;’R '
Brnqz1r=>5 B 52 Bund 442 BrnR) Ty 11(BLR)

- ‘;"Jq+2(ﬁt;rR)qul(anR) (23}
q

with ¢={or”.

However, by making use of the fact that J (B8/.R) =0,
we can, with recursion formulas for Bessel functions, show
that (21a) vanishes, i.e.,

K 0. (21b)

mn,qr

This curious phenomenon also occurs for the rectangular-
to-rectangular waveguide junction [9, p. 2061].

If we now scalar multiply (18) by &5°),(p,) and in-
tegrate over the rectangular cross section at z=0, we
obtain

br(nerz = Z Zan,qrafI’;) + Emn,qragi) (24)
q r
where
27 R_,e N
Qunar= [ [ &0 (0,9) 200, 6)p dp d (25)
27 (R, (e
—— /0 {0, 8) 22 (p,0)pdpdg. (26)

Again, closed-form expressions for these coupling coeffi-
cients (TM-TE and TM-TM) can be deduced

an,qr == Amn,quan(:,) Sin(q¢mn)

.[Brlnn,q—l,r_Br,nn,q+1,r“] (253)
Emn,qr = Amn,quan(re) Sin(q¢mn)

+ Br,n,n,q+1,r] . (263)
The latter can be shown to reduce to
~ BynBy R A,y N, NSO

2(B2, - B;)

i (¢, ) I, (B R)J,_1(ByR). (26b)

Equations (19) and (24) can be cast into matrix form as

follows:
10 _
p©|

mn,q—-1,r

_[B//

E

mn,qr

[0]

[[H] [E]][Zii'i] @

[Q]
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where a‘™ and b, with m=h or e, being the modal
weighting coefficient vectors in guides 1 and 2, respec-
tively, and [H], [0]=[K], [Q] and [E] being the sub-
matrices of the overall E-field mode-matching matrix [M],
with

b=[Mla (28)
and

= [a(h)T, a(e)T] b= [b(h)T, b(e)T]

with T indicating the transpose operator.

III. THE SCATTERING MATRIX OF THE
CIRCULAR-RECTANGULAR JUNCTION

We define the E-field modal coefficient scattering ma-
trix [S] of the circular-to-rectangular waveguide junction

to be such that
[a‘ ] _ [[Su] [S1.] ”:‘fr ]
b [[Sal [snl]{s”
where, as is traditional, the + and — superscripts denote,
respectively, incident and scattered waves.
In the case of the lossless structure, one can use H-field

mode matching in the circular junction aperture to deduce
the following matrix equation:

[M)[L1(67 - b%) = [V1](a" —a™).

(29)

(30)

H-field mode matching, analogous to the E-field mode
matching described in Section II, is well known [3], [5] and
will not be treated in detail in this paper. In (30) [Y,], for
i=1 and 2, is the modal admittance matrix for the ith

guide.
_|[x») o
= [ [0] [Yfe)]}

where the two submatrices in (31) are diagonal. In particu-
lar, for the circular guide, the diagonal elements are

2 k2 .
ym — VR — K yo - IO

b Jwiko

(31)

(32)

and for the rectangular guide they are

[CT (5T

Jog

Y =

2,mn

Yo = chakic :
2mn \/ mar\2 nw) K2 )
— ] +
( a ) ( b
In (32) and (33), p, is the permeability and €, and €, are
the permittivities of the dielectrics filling guides 1 and 2,
respectively.

Then, if we assume that incidence is from guide 1 only,
so that b* =0, it is straightforward to show, using (28)

(33)
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and (30), that

= {([Y1]+[YL1])_1([Y1]_[YLI])}a+ (34)

where
[YL1]=[M]T[Y2][M] (35)

is the “load” admittance matrix of guide 2 as “seen” by
guide 1. In view of the fact that b* =0, it follows from
(29) that

[Sul= ([(]+ 1Y) ' (%]-[Ya).  (36)
The other submatrices in (29) are then deduced by
simple matrix algebra

[521] = [M]([Su] + [I])
[Su] =2([Y1]+[YL1])_1[M (38)
[Szz]‘_‘ [M][Slz]“[l] (39)
where [I] is the identity matrix and T indicates the trans-
pose operation. These results may also be obtained by

means of the conservation of complex power technique [9],
[12].

(37)
1"[1,]

IV. TRANSVERSE DIAPHRAGM WITH CENTERED
CIRCULAR HOLE IN RECTANGULAR WAVEGUIDE

Fig. 2 illustrates the geometry of a diaphragm (perfectly
conducting) of nonzero thickness / with a centered circular
hole of radius R. This structure can be regarded as a
rectangular—circular-rectangular cascaded connection and
the generalized scattering matrix technique [8, pp. 207-217)
may be used to determine the overall scattering matrix
[S9] of the diaphragm

[sii]=[ss] = Sn]+[Su][L][Sp]
A= LSRN LIS TL]S]} TLIISH]  (40)
[s&] = [s4]
=[S {[T= (LSRN LISH]) T TLISu]. (41)

Here, the transmission-line matrix [L] of the central cir-

cular guide is a diagonal matrix such that

LW 0
<[ o W)
[0l  [L*]
with submatrix diagonal elements given by
LE]};)qr_eXp( ;BZ qr—k2 )
L, =exp( - B2~ k31). (43)

In (43), the subscript 2 denotes the circular guideA (see Fig.
2).

V. NuUMERICAL RESULTS

We begin with the case of a circular—rectangular wave-
guide junction. In our numerical computations, which con-
sider only air-filled guides, we selected a frequency range
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Fig. 2. A thick diaphragm, with centered circular hole, in a rectangular
waveguide.

for which the only propagating mode in the larger rectan-
gular guide was the TE,, mode. Consequently, there were
no propagating modes in the smaller circular guide. Thus,
the reflection coefficient p,, of the TE,, mode in the
rectangular guide was of primary interest

(44)

From p,, one can determine the normalized load admit-
tance (for TE,, rectangular modes) of the junction

P10 = 522,10,10-

= . 1-py
== iB=yr0

1+ pqg

(45)

which is pure imaginary since the circular guide is cut off.
Moreover, the minus sign indicates that the junction sus-
ceptance is inductive.

In the numerical work, the number of modes assumed in
each waveguide strongly depends on the size of the circular
guide relative to the rectangular. Table I provides the
relevant information. Normally, half as many TM modes
as TE modes are used in the circular guide. Moreover, as
R /b diminishes and with a = (9/4)b, the number of rect-
angular guide modes increases dramatically. Fortunately,
this large number of modes need only be used in the
calculation of the load admittance matrix [Y;,] as given by
(35); therefore no inversion of a large matrix is required.
Tables IT and III show the convergence of B, together with
B, for the thin diaphragm with a circular hole as a
function of the number of modes in the circular guide for
various values of R /b and at two frequencies; the rectan-
gular guide is assumed to be standard X-band guide with
a = 2.286 cm. It is seen in Tables II and III that for about
a dozen modes (eight TE and four TM) in the circular
guide, the numerical results have converged quite well for
all R /b ratios and at both the low and high frequencies.

In Fig. 3, the susceptance B; is plotted as a function of
a/Awith R /b as a parameter. Twelve modes were used in
the circular guide in all cases. Not surprisingly, the normal-
1zed susceptance increases as the circular waveguide radius
decreases and diverges as a /A — 0.5, since the rectangular
TE,, mode’s admittance vanishes at this point.

Also plotted at discrete values of a/A are the load
susceptances given in the Waveguide Handbook [2, p. 327].
For small irises, one has

_ 0.446abA,
B=——;

TABLE I
NUMBER OF RECTANGULAR MODES FOR A GIVEN NUMBER OF

CIRCULAR MODES
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Number of Number of Rectangular Modes (TE,TM)
Circular
Modes R=b/2 R«3b/8 R=b/4 R=b/8
(TE,T™)
2,1 13,6 20,10 40,25 155,95
4,2 18,10 35,20 65,50 275,20
8,4 35,20 65,40 130,90 500,350
TABLEI _
CONVERGENCE OF B; AND Bj, AT 8 GHz
R b/2 3b/8 b/4 b/8
Num. of - - - — - - - —
Modes B B B B B B B B
TE, T J D J D J ] J D
2,1 9.62 6.85 23.7 17.4 82.1 61.8 670 514
4,2 9.18 6.15 22.6 15.7 78.0 55.7 632 466
8,4 9.11 6.01 22.4 15.4 77.2 54,6 628 454
a=1225b=2.286 cm.
TABLE ITI
CONVERGENCE OF B; AND B, a1 14 GHz
R b/2 3b/8 b/4 ~ b/8
Num. of _ - — — — _ - —
Modes BJ BD BJ BD BJ BD BJ BD

TE, TM
2,1
4,2
8,4

2.56
2.45
2.44

2.08
1.87
1.86

7.39
7.04
6.99

5.41
4.83
4.76

28.0
26.6
26.3

20.4
18.2
17.9

a=2.25b=2.286 cm.

® MARCUVITZ

0 | ] |
0.5 o7

a/A

Fig. 3. Susceptance of rectangular-to-circular waveguide junction.

where D=2R and A, is the wavelength of the propagat-
ing mode in the rectangular waveguide. The values for B,
can be obtained from a graph elsewhere in the handbook
[2, p. 240]. We note that the agreement between the
quasi-static variational solution (46) and the more rigorous
scattering matrix solution (solid lines in Fig. 3) is quite
good, even for large values of R /b.

Numerical results for the more interesting case of a thin
(I=0) diaphragm with centered circular aperture in a
rectangular guide are presented in Fig. 4. Again, it is
convenient to represent the zero-thickness diaphragm as a
shunting susceptance B, = Bj/Y;, normalized with re-
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Fig. 4. Susceptance of a thin diaphragm with circular aperture. Solid
lines are calculated using the present method while broken lines are
from the small-hole formula.

spect to the rectangular TE,, mode’s admittance. B, is
computed for four aperture radii, and the convergence
behavior is indicated in Tables II and III. For twelve
modes in the circular guide, it is estimated that the error in
B, is 2 percent or less. Also given in Fig. 4 are curves
based on the well-established formula

5 3ab)\g
D™ 16aR3?’

R<A, (47)

derived in Collin [10, pp. 190-194] and originating with
the quasi-static theory of Bethe [1]. As expected, (47)
agrees well with the present results for small holes, R <
b/8. For larger apertures, the simple formula overesti-
mates B, and hence underestimates the transmitted field.
Bethe shows that for small apertures the fields scattered in
the forward direction are proportional to R®/A?, whereas
for large Kirchhoff-type apertures they vary as RZ/A.
Accordingly, as R /A increases (but in our case still re-
mains less than unity), the small-aperture (Bethe) theory
predicts a forward scattered field that is too weak and
hence a B, that is too large. This is confirmed by the
results presented in Fig. 4.

The diaphragm’s susceptance is also compared with the
variational calculus susceptance provided by the Wave-
guide Handbook [2, p. 240]. The latter gives lower suscep-
tances than the small-hole expression, but for large holes
(R = b/2) gives values that differ from ours by about 10
percent.

Fig. 5 provides curves of B, for seven different ratios of
R /b. The range of a/A is only over that in which the
TE,, mode alone can propagate, i.e., the range of greatest
practical interest.

We next turn to the case of a diaphragm of nonzero
thickness (! # 0). When the normalized load admittance is
calculated, the real part is no longer unity. A more
sophisticated circuit representation is thus required. We
have chosen the m-equivalent circuit shown in Fig. 6. It
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Fig. 5. Susceptance of a thin diaphragm, with a centered circular aper-
ture of radius R, in a rectangular waveguide (a = 2.25b).

DIAPHRAGM WITH CENTERED
CIRCULAR HOLE

K
K4
RECTANGULAR
WAVEGUIDE

EQUIVALENT TRANSMISSION
LINE AND 7 NETWORK

Fig. 6. Thick diaphragm with centered circular hole in rectangular
waveguide and the equivalent transmission line with II network.

can be shown that

_ (1- 710)2_ Plo

JjB,=
o+ P10)2* T

(48)
_ 27,
JBs= (49)
(1+ P10)2'“ i

where

(50)
is the transmission coefficient of the TE,;, mode and is
such that

Tio0 ™ S31,1o,10

|P1o|2+ |”'10!2=1 (51a)

arg(pyo) —arg(my,) = 7/2. (51b)
Clearly B, and By can be deduced from a knowledge of
70 alone. We choose |7,| and arg(y,) for our graphical
results since Bg —» co when /— 0. The amplitude of 7, is
plotted in Fig. 7(a) for four aperture radii and a series of
diaphragm thicknesses ranging in increments of Al/q =
0.02 from //a =0 to [/a =0.08. As is expected, the trans-
mitted wave’s amplitude decreases with increasing di-
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- 40

<0

Fig. 7. Amplitude and phase of the transmission coefficient (TE,,
mode) for a thick diaphragm, with centered circular hole, in rectangular
waveguide. The thinnest diaphragm (/= 0) has the largest |7].

aphragm thickness. Moreover, the effect is greater for
small irises since in a guide of smaller radius the modes
that try to “tunnel” across the diaphragm are more strongly
attenuated.

The phase of the transmission coeff1c1ent arg(7yg), is
plotted in Fig. 7(b). Here the thicknesses are //a = 0, 0.04,
and 0.08, except for the case of R = b /8, where the phase
is almost invariant with thickness. The greatest phase
change occurs for the largest hole (R = b/2). Not surpris-
ingly, the phase is almost +90° for small holes, since in
such a case p;, = —1 and (51b) must be satisfied.

VL

This paper has provided an exact modal solution (in
principle) to the problem of scattering at circular-to-rect-
angular waveguide junctions. In practice, numerical results
for dominant-mode reflection and transmission coeffi-
cients accurate to 1 or 2 percent are possible when 12
modes are considered in the smaller circular guide. In the
case of diaphragms with centered circular holes, the effect
of the thickness of the diaphragm has been shown to be
always significant (see Fig. 7). The effect of sidewall thick-
ness in single and multiaperture waveguide couplers has
previously been taken into account by Levy [13], who used
the earlier small-aperture work of McDonald [14].

Although this paper has postulated throughout that the
waveguides are perfectly conducting, the effect of a large
but finite conductivity can be accommodated by a gener-
alization of the conservation of complex power technique
[15]. Moreover, the analysis of cavity resonators and filters
formed by transverse diaphragms with centered circular
holes is a quite simple extension of the present work, even
if conductivity losses are included [15].

DIscUsSION AND CONCLUSIONS
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